
 A4 see-saw models and form dominance

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP06(2009)072

(http://iopscience.iop.org/1126-6708/2009/06/072)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:13

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/06
http://iopscience.iop.org/1126-6708/2009/06/072/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
6
(
2
0
0
9
)
0
7
2

Published by IOP Publishing for SISSA

Received: April 1, 2009

Accepted: June 1, 2009

Published: June 23, 2009

A4 see-saw models and form dominance

Mu-Chun Chena and Stephen F. Kingb

aDepartment of Physics & Astronomy, University of California,

Irvine, CA 92697-4575, U.S.A.
bSchool of Physics & Astronomy, University of Southampton,

Southampton, SO17 1BJ, U.K.

E-mail: muchunc@uci.edu, sfk@phys.soton.ac.uk

Abstract: We introduce the idea of Form Dominance in the (type I) see-saw mechanism,

according to which a particular right-handed neutrino mass eigenstate is associated with

a particular physical neutrino mass eigenstate, leading to a form diagonalizable effective

neutrino mass matrix. Form Dominance, which allows an arbitrary neutrino mass spec-

trum, may be regarded as a generalization of Constrained Sequential Dominance which

only allows strongly hierarchical neutrino masses. We consider alternative implementa-

tions of the see-saw mechanism in minimal A4 see-saw models and show that such models

satisfy Form Dominance, leading to neutrino mass sum rules which predict closely spaced

neutrino masses with a normal or inverted neutrino mass ordering. To avoid the partial

cancellations inherent in such models we propose Natural Form Dominance, in which a

different flavon is associated with each physical neutrino mass eigenstate.

Keywords: Beyond Standard Model, Neutrino Physics

ArXiv ePrint: 0903.0125

c© SISSA 2009 doi:10.1088/1126-6708/2009/06/072

mailto:muchunc@uci.edu
mailto:sfk@phys.soton.ac.uk
http://arxiv.org/abs/0903.0125
http://dx.doi.org/10.1088/1126-6708/2009/06/072


J
H
E
P
0
6
(
2
0
0
9
)
0
7
2

Contents

1 Introduction 1

2 TBM in the flavour basis 2

3 Form dominance 3

4 Minimal A4 models and form dominance 6

4.1 Minimal A4 models 6

4.2 The see-saw mechanism and form dominance in minimal A4 models 8

4.2.1 The usual see-saw realization 8

4.2.2 An alternative see-saw realization 9

5 Discussion and conclusion 10

1 Introduction

The most remarkable discovery in particle physics over the past decade has been the dis-

covery of neutrino mass and mixing involving two large mixing angles commonly known

as the atmospheric angle θ23 and the solar angle θ12. The latest data from neutrino os-

cillation experiments is consistent with the so called tri-bimaximal mixing (TBM) mixing

pattern [1],

UTBM =







− 2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3
− 1√

2






. (1.1)

The question of how to achieve TBM has been the subject of intense theoretical speculation

and there have been many attempts to derive TBM from models based on an underlying

family symmetry spontaneously broken by new Higgs fields called “flavons” [2–12]. Since

the forthcoming neutrino experiments will be sensitive to small deviations from TBM, it is

important to study the theoretical uncertainty in such TBM predictions, and this has also

been addressed [13].

Although in the above theoretical models [2–12] the neutrino and charged lepton mass

matrices are always constructed in some particular basis, the physical results must always

be basis invariant. For example, models of TBM based on the discrete family symmetry

group A4 were originally constructed in a basis in which both the neutrino and charged

lepton mass matrices are both non-diagonal [3], but were subsequently reformulated in

the more convenient flavour basis in which the charged lepton masses were diagonal [4].

Similarly, when the see-saw mechanism is considered, the Dirac neutrino and right-handed
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neutrino Majorana mass matrices are also constructed in a particular basis but again

the results must be basis invariant. Thus, although see-saw models of TBM based on

the discrete family symmetry group A4 have so far been constructed in a basis in which

the right-handed neutrino mass matrix is not diagonal [4], in this paper we shall find it

convenient to consider such models in the diagonal right-handed neutrino mass basis.

In this paper we introduce the idea of Form Dominance (FD) in the (type I) see-

saw mechanism as a generic and natural mechanism which leads to a form diagonalizable

effective neutrino mass matrix in which the mixing matrix is independent of the parameters

which control the physical neutrino masses. It is well known that models which reproduce

a form diagonalizable effective neutrino mass matrix can provide a natural explanation

of TBM without any fine-tuning of parameters [14]. Here we shall show how to achieve

such a form diagonalizable effective neutrino mass matrix starting from the type I see-saw

mechanism using the FD mechanism. The basic idea of FD is that a particular right-handed

neutrino mass eigenstate is associated with a particular physical neutrino mass eigenstate,

similar to the case of Constrained Sequential Dominance (CSD) [7, 15]. However, whereas

CSD only applies to the case of a strong neutrino mass hierarchy, FD is more general and

allows three physical neutrino masses with arbitrary masses and ordering. As an example of

FD we shall consider minimal A4 see-saw models, in which the neutrino sector involves only

one triplet flavon plus one singlet flavon, including both the usual see-saw model proposed

in [4] and a new alternative one. Working in the diagonal right-handed neutrino mass

basis, we shall show that both these see-saw models satisfy FD leading to neutrino mass

sum rules which predict closely spaced neutrino masses with a normal or inverted neutrino

mass ordering [10]. The results motivate the idea of Natural Form Dominance (NFD), in

which a different flavon is associated with each physical neutrino mass eigenstate, with

CSD as a special case of NFD.

The remainder of the paper is organized as follows. In section 2 we give the form of

the TBM effective neutrino mass matrix in the flavour basis where it may be expressed in

terms of neutrino masses and columns of the MNS matrix. In section 3 we introduce the

idea of FD in a particular basis, then in a basis invariant way. In section 4 we examine

the minimal A4 see-saw models defined above in the diagonal right-handed neutrino mass

basis (not usually considered) and show that they satisfy FD, with the neutrino masses

obeying various sum rules corresponding to closely spaced neutrino masses with a normal

or inverted neutrino mass ordering. Section 5 is reserved for a discussion of our results,

including the motivation for NFD, and the conclusion.

2 TBM in the flavour basis

In the flavour basis, in which the charged lepton mass matrix is diagonal and the TBM

arises from the neutrino sector, the effective neutrino mass matrix corresponding to TBM,

denoted by (Mν
eff )TBM, may be diagonalized as,

Mν
eff

diag = UT
TBM(Mν

eff)TBMUTBM = (m1, m2, m3) . (2.1)

Given UTBM, this enables (Mν
eff)TBM to be determined in terms of neutrino masses,

(Mν
eff)TBM = m1Φ1Φ

T
1 + m2Φ2Φ

T
2 + m3Φ3Φ

T
3 , (2.2)
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where the three matrices are

Φ1Φ
T
1 =

1

6







4 −2 −2

−2 1 1

−2 1 1






, Φ2Φ

T
2 =

1

3







1 1 1

1 1 1

1 1 1






, Φ3Φ

T
3 =

1

2







0 0 0

0 1 −1

0 −1 1






, (2.3)

corresponding to the orthonormal column vectors

Φ1 =
1√
6







−2

1

1






, Φ2 =

1√
3







1

1

1






, Φ3 =

1√
2







0

1

−1






. (2.4)

Note that Φ1,2,3 are just the three columns of UTBM, namely,

Φ1i = UTBMi1, Φ2i = UTBMi2, Φ3i = UTBMi3. (2.5)

From above we may write (Mν
eff)TBM as the symmetric matrix,

(Mν
eff )TBM =







a b c

. d e

. . f






, (2.6)

where,

a =
2

3
m1 +

1

3
m2,

b = c = −1

3
m1 +

1

3
m2,

d = f =
1

6
m1 +

1

3
m2 +

1

2
m3,

e = a + b − d. (2.7)

In particular b = c and d = f and e = a + b − d are the characteristic signatures of the

TBM neutrino mass matrix in the flavour basis.

3 Form dominance

The key requirement of a form diagonalizable effective neutrino mass matrix is the presence

of no more than three free parameters in the matrix, which are subsequently related to the

physical neutrino mass eigenvalues. For example a form diagonalizable effective neutrino

mass matrix in the notation of eq. (2.6) involving only three free parameters a, b, d and

taking the form

(Mν
eff)TBM =







a b b

. d (a + b − d)

. . d






, (3.1)

will result in TBM independently of the parameters a, b, d and hence independently of the

physical neutrino masses which are related to the parameters a, b, d by eq. (2.7). On the
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other hand if there are more than three free parameters then one or more of the conditions

in eq. (2.7) b = c and d = f and e = a+b−d would have to be achieved by tuning and such a

matrix would then not be form diagonalizable since the mixing matrix would depend on the

parameter choice (and hence depend on the physical neutrino masses). It is clear that the

notion of a form diagonalizable effective neutrino mass matrix is related to its dependence

on only three (or less) free parameters. If this matrix arises from the type I see-saw mech-

anism, it is not a priori obvious how the underlying theory, involving the Dirac neutrino

mass matrix and heavy Majorana neutrino mass matrix could naturally lead to such a form

diagonalizable effective neutrino mass matrix. In general, the see-saw mechanism involves

many parameters which could enter into the effective neutrino mass matrix arising from

the non-symmetric Dirac mass matrix as well as the (typically) three right-handed neu-

trino masses. To achieve a form diagonalizable effective neutrino mass matrix it is clearly

necessary to constrain the form of the Dirac neutrino mass matrix, and also associate the

right-handed neutrino masses with the Dirac mass matrix, in such a way that only three (or

fewer) independent combinations of parameters enter the effective neutrino mass matrix.

Constrained Sequential Dominance (CSD) [7, 15] provides an example of how this may

be achieved for the case of strongly hierarchical neutrino masses. According to CSD, in

the diagonal right-handed neutrino mass basis, each column of the Dirac mass matrix is

associated with a particular right-handed neutrino mass, and CSD then imposes the con-

straint that these columns are proportional to those in eq. (2.4), leading to only three

independent parameters entering the effective neutrino mass matrix, which is consequently

form diagonalizable. However CSD assumes a strong physical neutrino mass hierarchy,

|m1| ≪ |m2| < |m3| so that effectively the subdominant column associated with m1 may

be neglected, and then only two free parameters associated with two right-handed neutri-

nos responsible for m2 and m3 remain [7]. Here we shall discuss a generalization of CSD

applicable to the case of three physical neutrino masses m1,m2,m3 with arbitrary mass val-

ues and mass orderings (including the cases of an inverted hierarchy and quasi-degenerate

neutrinos as well as hierarchical neutrinos). In other words we shall propose a more general

framework which has all the nice properties of CSD, but which allows a non-hierarchical

neutrino mass spectrum.

We now introduce the notion of Form Dominance (FD) in the type I see-saw mechanism

as an elegant and generic mechanism for achieving a form diagonalizable effective neutrino

mass matrix from the type I see-saw mechanism. FD may be defined in the diagonal right-

handed neutrino mass basis and diagonal charged lepton mass basis as follows. To set

the notation, recall that, in the type I see-saw mechanism, the starting point is a heavy

right-handed Majorana neutrino mass matrix MRR and a Dirac neutrino mass matrix (in

the left-right convention) MD, with the light effective left-handed Majorana neutrino mass

matrix Mν
eff given by the type I see-saw formula [16],

Mν
eff = MDM−1

RRMT
D. (3.2)

In a basis in which MRR is diagonal, we may write,

MRR = diag(MA,MB ,MC) (3.3)
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and MD may be written in terms of three general column vectors A,B,C,

MD = (A,B,C). (3.4)

The see-saw formula then gives,

Mν
eff =

AAT

MA
+

BBT

MB
+

CCT

MC
. (3.5)

Using this notation, FD may now be defined as follows. FD is the requirement that each

column of the Dirac mass matrix (in the particular basis defined above) is proportional to

a different column of the MNS matrix U ,

Ai = aUi1, Bi = bUi2, Ci = cUi3. (3.6)

It is then clear that, although there are six parameters in the see-saw theory, only three

independent combinations will enter into the effective neutrino mass matrix, after the type

I see-saw mechanism. To be precise, the three constants of proportionality a, b, c in eq. (3.6)

combine with the three right-handed neutrino masses MA,B,C to yield three independent

combinations of parameters appearing in the effective neutrino mass matrix Mν
eff given by

the see-saw mechanism in eq. (3.5). Moreover, the resulting Mν
eff is form diagonalizable,

diagonalized by the MNS matrix U , with the physical neutrino masses mi given by a2/MA,

b2/MB , c2/MC . In such a case, each right-handed neutrino mass eigenstate is clearly

associated with a particular physical neutrino mass eigenstate of mass mi. We emphasize

that FD applies to any general MNS mixing matrix U , not just TBM.

The notion of FD may now simply be applied to the special case of TBM, in the

particular basis defined above, namely the diagonal right-handed neutrino mass basis and

diagonal charged lepton mass basis. Applying the FD conditions in eq. (3.6) to the case

of U = UTBM, by comparing eq. (3.5) to eqs. (2.2), (2.3), (2.4) it is clear that an effective

neutrino mass matrix of the TBM type (Mν
eff)TBM may be achieved if

A = aΦ1 =
a√
6







−2

1

1






, B = bΦ2 =

b√
3







1

1

1






, C = cΦ3 =

c√
2







0

1

−1






. (3.7)

Moreover, the constraints in eq. (3.7) lead to a form diagonalizable (Mν
eff )TBM diagonalized

by UTBM (in this basis) with physical neutrino mass eigenvalues given by m1 = a2/MA,

m2 = b2/MB , m3 = c2/MC , as indicated previously.

It is interesting to compare FD for TBM defined above to Constrained Sequential

Dominance (CSD) defined in [7, 15]. In CSD a strong hierarchy |m1| ≪ |m2| < |m3| is

assumed which enables m1 to be effectively ignored (typically this is achieved by taking

MA to be very heavy leading to a very light m1) then CSD is defined by only assuming

the second and third conditions in eq. (3.7) [7]. Thus CSD is seen to be just a special case

of FD corresponding to a strong neutrino mass hierarchy. FD on the other hand is more

general and allows any choice of neutrino masses including a mild hierarchy, an inverted

hierarchy or a quasi-degenerate mass pattern.
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Finally note that FD can also be defined in a basis invariant way as follows. In a

general basis, one can always write, without loss of generality
(

AiM
−1/2
A BiM

−1/2
B CiM

−1/2
C

)

=
(

Ui1m
1/2
1 Ui2m

1/2
2 Ui3m

1/2
3

)

RT (3.8)

where R is the general orthogonal matrix introduced by Casas and Ibarra [17]. Then FD

corresponds to the case of R equal to the unit matrix (up to permutations which just

corresponds to a relabelling of A,B,C). This was in fact observed in [18]1 but only the

limit m1 = 0 was considered corresponding to CSD, where it was noted that the R matrix

formalism provides a basis invariant formulation of CSD (since R is basis invariant). Here

we allow for general mi with FD defined by R equal to the unit matrix providing a basis

invariant definition of FD. However in practice we shall work in the diagonal right-handed

neutrino mass basis and diagonal charged lepton mass basis discussed previously.

4 Minimal A4 models and form dominance

In this section we discuss Form Dominance (FD) in the framework of minimal A4 models,

where minimal means that the neutrino sector only involves one triplet flavon plus one

singlet flavon. We shall work in the diagonal charged lepton mass basis (referred to as the

flavour basis). To be as general as possible, we discuss these models independently of a

particular mechanism for vacuum alignment or of the symmetries required to enforce the

operator structure of the models.

4.1 Minimal A4 models

The group A4 is a group that describes even permutations of four objects. It has two

generators, S and T , and four inequivalent irreducible representations, 1, 1′, 1′′ and 3. In

the diagonal basis for T , the two generators are given in the triplet representation as,

S =
1

3







−1 2 2

2 −1 2

2 2 −1






, T =







1 0 0

0 ω2 0

0 0 ω






, (4.1)

where ω = e2πi/3. The product rules are 3 × 3 = 1 + 1′ + 1′′ + 3S + 3A, and 1a × 1b =

1(a+b) mod 3, where a, b = 0, 1, 2 for representation 1, 1′ and 1′′, respectively. The

Clebsch-Gordon coefficients of the above product rules can be found in ref. [4].

Without the right-handed neutrinos, the small neutrino masses can be generated by

the dimension-5 operator which breaks both the total and individual lepton numbers,

yij
ℓc
iℓjHH

ΛL
, (4.2)

where ℓi (i = 1, 2, 3) are the lepton doublets, H is the SM Higgs, yij are the Yukawa

couplings and ΛL is the cutoff scale for the lepton number violation operator. The tri-

bimaximal mixing pattern arises if the three lepton doublets transform as a triplet of A4,

1See eq. 92 of [18] and the subsequent discussion. Note also that to be fully general the column vectors

introduced in eq. (2.4) should have been post multiplied by R
T .
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and the three right-handed charged leptons are assigned to be singlets under A4,

L =







ℓ1

ℓ2

ℓ3






∼ 3 , eR ∼ 1 , µR ∼ 1′′ , τR ∼ 1′ . (4.3)

The Lagrangian that gives rise to neutrino masses is

LLL =
LcLHH

ΛL

(〈φS〉
Λ

+
〈u〉
Λ

)

, (4.4)

where Λ is the cutoff scale of the A4 symmetry. The triplet flavon field, φS ∼ 3, and the

singlet flavon field, u ∼ 1, acquire the following vacuum expectation values (VEVs),

〈φS〉
Λ

=







1

1

1






αs ,

〈u〉
Λ

= α0 . (4.5)

The VEV 〈φS〉 breaks the A4 symmetry down to GS , which is the subgroup of A4 generated

by the group element S. Upon the electroweak symmetry breaking, the following effective

neutrino mass matrix is generated,

Mν
eff =







2αs + α0 −αs −αs

−αs 2αs −αs + α0

−αs −αs + α0 2αs







v2

ΛL
, (4.6)

where v is the SM Higgs VEV. This mass matrix is form-diagonalizable, i.e. it is always

diagonalized, independent of the values for the parameters αs and α0, by the tri-bimaximal

mixing matrix,

Mν
eff

diag = UT
TBMMν

effUTBM = diag(3αs + α0, α0, 3αs − α0) ·
v2

ΛL
≡ (m1, m2, m3) . (4.7)

Because the three mass eigenvalues m1,2,3 are determined by two parameters, a and b, there

is a sum rule among the three light masses [10],

m1 − m3 = 2m2 . (4.8)

Given that the solar mass squared difference is positive, this sum rule leads to a prediction

for the normal mass hierarchy in the atmospheric neutrino sector. The charged lepton

masses are generated due to the following Lagrangian,

Llep =
1

Λ

(

ye(ℓφ
′)1eRH + yµ(ℓφ′)1′µRH + yτ (ℓφ

′)1′′τRH
)

. (4.9)

Here the triplet flavon field, φT , acquires a VEV along the following direction,

〈φT 〉 =







vT

0

0






, (4.10)

breaking the A4 symmetry down to GT , which is the subgroup generated by T . This leads

to a diagonal charged lepton mass matrix, i.e. Ve,L = I, and thus the PMNS matrix is

exactly of the tri-bimaximal form, UPMNS = Ve,LV †
ν = UTBM.
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4.2 The see-saw mechanism and form dominance in minimal A4 models

The minimal A4 see-saw realization of the tri-bimaximal mixing pattern has been discussed

before [4], however here we examine such models in the diagonal right-handed neutrino mass

basis, which has not been discussed before. We discuss two alternative see-saw realizations

of the tri-bimaximal mixing pattern in the basis where the charged lepton mass matrix

is diagonal Ve,L = I, the usual one proposed in [4], and an alternative example which we

propose. We shall show that in both examples the FD mechanism is present.

4.2.1 The usual see-saw realization

Since the charged lepton mass matrix is diagonal in our realization, it is generated by the

same Lagrangian as given above in eq. (4.9). The three right-handed neutrinos transform

as a triplet of A4,

N =







N1

N2

N3






∼ 3 , (4.11)

and the right-handed neutrino Majorana mass matrix is generated by,

MRR = N cN(〈φS〉 + 〈u〉) =







2αs + α0 −αs −αs

−αs 2αs −αs + α0

−αs −αs + α0 2αs






Λ . (4.12)

The Dirac neutrino mass matrix is generated by the following interaction,

MD = yHLN =







1 0 0

0 0 1

0 1 0






yv . (4.13)

After the see-saw mechanism takes place, the resulting effective neutrino mass matrix is

M eff
ν = MDM−1

RRMT
D = UT

TBMdiag(m1,m2,m3)UTBM. (4.14)

This effective neutrino mass matrix is diagonalized by UTBM with the mass eigenval-

ues being

diag(m1,m2,m3) =

(

1

3αs + α0
,

1

α0
,

1

3αs − α0

)

y2v2

Λ
. (4.15)

The sum rule among the three light neutrino masses is given in this see-saw realization by,

1

m1
− 1

m3
=

2

m2
, (4.16)

which can lead to both normal and inverted hierarchical mass orderings.

In the see-saw realization of the tri-bimaximal mixing described above, the right-

handed neutrino Majorana mass matrix MRR is diagonalized by

Mdiag
RR = UT

TBMMRRUTBM = diag(3αs +α0, α0, 3αs −α0)Λ ≡ diag(MA,MB ,MC). (4.17)
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Rotating to the diagonal basis for the right-handed neutrino mass matrix MRR, the Dirac

mass matrix is given by,

M ′
D = MDUTBM = yv







− 2√
6

1√
3

0
1√
6

1√
3
− 1√

2
1√
6

1√
3

1√
2






≡ (A, B, C) , (4.18)

where A, B and C are three column vectors of M ′
D. Comparing eq. (4.18) and eq. (3.7)

we see that Form Dominance is satisfied with the proportionality constants being, a = b =

−c = yv, so that in this basis the Dirac mass matrix is in fact exactly proportional to the

TBM mixing matrix.2 Form Dominance is thus at work in this model.

The physical light neutrino masses are given by eq. (4.15), with the mass splittings

being controlled by the right-handed neutrino masses in eq. (4.17), MA = 3αs+α0 MB = α0

and MC = 3αs−α0. Since these masses are controlled by linear combinations of two VEVs

α0 and αs, some partial cancellations are required to obtain an acceptable neutrino mass

pattern and it is impossible to obtain a strong neutrino mass hierarchy in this model.

4.2.2 An alternative see-saw realization

Alternatively, the see-saw mechanism can be implemented in the following way.3 Instead

of the interactions given in eq. (4.12) and (4.13), consider that the Dirac mass term is

generated by

MD = HLN

(〈φS〉
Λ

+
〈u〉
Λ

)

=







2αs + α0 −αs −αs

−αs 2αs −αs + α0

−αs −αs + α0 2αs






v , (4.19)

and the Majorana mass matrix is generated by,

MRR = MRN cN =







1 0 0

0 0 1

0 1 0






MR . (4.20)

Similar to the previous consideration, the charged lepton mass matrix is generated by the

Lagrangian given in eq. (4.9), and thus it is diagonal. In this case, one can easily check

that the neutrino mixing matrix is also of the tri-bimaximal form and the three effective

mass eigenvalues are,

(m1, m2, m3) =

(

(3αs + α0)
2, α2

0, (3αs − α0)
2

)

v2

MR
, (4.21)

leading to a mass sum rule,

∣

∣|√m1| − |√m3|
∣

∣ = 2|√m2| , for (3αs + α0)(3αs − α0) > 0 (4.22)
∣

∣|√m1| + |√m3|
∣

∣ = 2|√m2| , for (3αs + α0)(3αs − α0) < 0 . (4.23)

2This is a special case. In general FD does not require that the Dirac mass matrix be proportional to

the MNS matrix, only that the respective columns be proportional.
3For implementation in the diagonal basis for S, see [19].
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In this see-saw realization, the RH neutrino mass matrix can be diagonalized by

the TBM matrix,

UT
TBMMRRUTBM = diag(1, 1,−1)MR . (4.24)

In this basis, the Dirac neutrino mass matrix becomes,

M ′
D =







− 2√
6

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3
− 1√

2






· diag(3αs + α0, α0, 3αs − α0)v ≡ (A,B,C) , (4.25)

Similar to the previous case, there exists a correspondence between the vectors A, B, C

and Φ1,2,3 with proportionality constants being

a = 3αs + α0, b = α0, c = 3αs − α0 , (4.26)

and thus the FD mechanism is at work. In this case the right-handed neutrino masses

are degenerate, and the physical light neutrino masses are proportional to a2, b2, c2. Since

a, b, c are controlled by linear combinations of two VEVs α0 and αs, as before, some partial

cancellations are required to obtain an acceptable neutrino mass pattern and it is again

impossible to obtain a strong neutrino mass hierarchy in this model.

5 Discussion and conclusion

The current experimental best fit values for the neutrino mixing angles indicate that the

neutrino mixing matrix resembles the TBM form. This suggests an underlying (possibly

discrete) family symmetry, such as, for example, A4. In the most attractive such models,

the resulting effective neutrino mass matrix is form diagonalizable, that is to say it involves

three (or less) parameters and, in the diagonal charged lepton mass basis, is diagonalized

by the TBM matrix, independently of the choice of the parameters.

In this paper we have considered in general terms how such a form diagonalizable

effective neutrino mass matrix could result from the type I see-saw mechanism. Clearly a

necessary condition is that the type I see-saw mechanism must lead to only three (or less)

independent parameters appearing in the effective mass matrix. We have proposed FD as

an elegant way to achieve a form diagonalizable effective neutrino mass matrix, starting

from the type I see-saw mechanism. According to FD a particular right-handed neutrino

mass eigenstate is associated with a particular physical neutrino mass eigenstate in such

a way that, in the diagonal right-handed neutrino mass basis, the columns of the Dirac

mass matrix are proportional to columns of the MNS matrix, as in eq. (3.6) in general, or

eq. (3.7) for the TBM case. FD may be regarded as a generalization of CSD, but whereas

CSD assumes a strong neutrino mass hierarchy, FD allows three physical neutrino masses

with arbitrary masses and ordering.

As an example of these ideas we have considered minimal A4 models whose neutrino

sector involves only one triplet flavon plus one singlet flavon. We have discussed two dif-

ferent minimal A4 see-saw models, the “usual” one, and a new “alternative” one. Working

– 10 –



J
H
E
P
0
6
(
2
0
0
9
)
0
7
2

in the diagonal charged lepton and right-handed neutrino mass basis, we have shown that

both these see-saw models satisfy the conditions of FD, leading to two different neutrino

mass sum rules which both predict closely spaced neutrino masses with a normal or in-

verted neutrino mass ordering. Despite the fact that they satisfy FD, we have seen that

the minimal A4 models require some partial cancellations in order to obtain an acceptable

neutrino mass pattern. This is due to the fact that the light physical neutrino mass eigen-

values mi are each non-trivial functions of the basic parameters of the model, in particular

the two flavon VEVs in the neutrino sector of the minimal A4 models. While this leads to

some welcome predictivity of the neutrino masses, it does mean that partial cancellations

between the two flavon VEVs are required to achieve the desired hierarchy between the

oscillation parameters ∆m2
atm and ∆m2

sol.

The most natural way to achieve FD without invoking any cancellations would be

to have three triplet flavons Φ̃1, Φ̃2, Φ̃3, in the neutrino sector, whose VEVs 〈Φ̃1〉, 〈Φ̃2〉,
〈Φ̃3〉 are proportional to the three columns of the TBM matrix Φ1, Φ2, Φ3, respectively,

as in eq. (2.4). These three flavon VEVs would then form the three columns of the Dirac

neutrino mass matrix, in the diagonal charged lepton and right-handed neutrino mass

basis, as in eq. (3.7). In such a type I see-saw model, which we refer to as Natural Form

Dominance (NFD), each light physical neutrino mass mi would then be controlled by

the VEV of a different flavon 〈Φ̃i〉, allowing an arbitrary neutrino mass spectrum to be

achieved without requiring any partial cancellations of parameters. In fact CSD [7] just

corresponds to a special case of NFD corresponding to a strong neutrino mass hierarchy

|m1| ≪ |m2| < |m3|, in which the contribution of the flavon Φ̃1 is negligible (and hence

may be dropped or replaced by any other flavon) while m2 is controlled by the flavon Φ̃2

and m3 is controlled by the flavon Φ̃3. Examples of such CSD models, with Φ̃1 replaced

by a flavon whose VEV alignment is approximately proportional to (0, 0, 1)T , have already

been proposed based on SU(3), ∆27 [6], SO(3) [7, 8] and A4 [9]. However NFD models with

a general (not necessarily hierarchical) neutrino mass spectrum involving all three flavons

Φ̃i have yet to be constructed. This would represent an interesting new direction in model

building which goes beyond the minimal A4 see-saw models considered here.
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